Copied to
clipboard

G = C42.124D4order 128 = 27

106th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.124D4, C2.4(C8⋊Q8), (C2×C8).32Q8, C4.14(C4×Q8), C42.C210C4, C42.166(C2×C4), C23.815(C2×D4), (C22×C4).303D4, C4.82(C22⋊Q8), C22.37(C4⋊Q8), C429C4.13C2, C22.4Q16.51C2, (C2×C42).336C22, (C22×C8).410C22, C22.102(C8⋊C22), (C22×C4).1426C23, C22.70(C4.4D4), C22.91(C8.C22), C2.31(C23.36D4), C2.4(C42.29C22), C2.4(C42.30C22), C2.14(C23.67C23), C4⋊C4.99(C2×C4), (C2×C4).213(C2×Q8), (C2×C8⋊C4).35C2, (C2×C4).1366(C2×D4), (C2×C4⋊C4).97C22, (C2×C42.C2).7C2, (C2×C4).609(C4○D4), (C2×C4).440(C22×C4), (C2×C4).141(C22⋊C4), C22.301(C2×C22⋊C4), SmallGroup(128,724)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.124D4
C1C2C22C23C22×C4C2×C42C2×C8⋊C4 — C42.124D4
C1C2C2×C4 — C42.124D4
C1C23C2×C42 — C42.124D4
C1C2C2C22×C4 — C42.124D4

Generators and relations for C42.124D4
 G = < a,b,c,d | a4=b4=c4=1, d2=a2b2, ab=ba, cac-1=a-1, dad-1=a-1b2, cbc-1=dbd-1=b-1, dcd-1=bc-1 >

Subgroups: 244 in 130 conjugacy classes, 64 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C8⋊C4, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C42.C2, C42.C2, C22×C8, C22.4Q16, C429C4, C2×C8⋊C4, C2×C42.C2, C42.124D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C22⋊C4, C4×Q8, C22⋊Q8, C4.4D4, C4⋊Q8, C8⋊C22, C8.C22, C23.67C23, C23.36D4, C42.29C22, C42.30C22, C8⋊Q8, C42.124D4

Smallest permutation representation of C42.124D4
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 38 29 13)(2 39 30 14)(3 40 31 15)(4 37 32 16)(5 110 121 19)(6 111 122 20)(7 112 123 17)(8 109 124 18)(9 49 34 25)(10 50 35 26)(11 51 36 27)(12 52 33 28)(21 119 108 126)(22 120 105 127)(23 117 106 128)(24 118 107 125)(41 81 71 60)(42 82 72 57)(43 83 69 58)(44 84 70 59)(45 56 67 61)(46 53 68 62)(47 54 65 63)(48 55 66 64)(73 102 113 85)(74 103 114 86)(75 104 115 87)(76 101 116 88)(77 89 93 98)(78 90 94 99)(79 91 95 100)(80 92 96 97)
(1 87 9 79)(2 86 10 78)(3 85 11 77)(4 88 12 80)(5 84 23 66)(6 83 24 65)(7 82 21 68)(8 81 22 67)(13 75 25 91)(14 74 26 90)(15 73 27 89)(16 76 28 92)(17 72 126 62)(18 71 127 61)(19 70 128 64)(20 69 125 63)(29 104 34 95)(30 103 35 94)(31 102 36 93)(32 101 33 96)(37 116 52 97)(38 115 49 100)(39 114 50 99)(40 113 51 98)(41 120 56 109)(42 119 53 112)(43 118 54 111)(44 117 55 110)(45 124 60 105)(46 123 57 108)(47 122 58 107)(48 121 59 106)
(1 118 31 127)(2 128 32 119)(3 120 29 125)(4 126 30 117)(5 52 123 26)(6 27 124 49)(7 50 121 28)(8 25 122 51)(9 111 36 18)(10 19 33 112)(11 109 34 20)(12 17 35 110)(13 107 40 22)(14 23 37 108)(15 105 38 24)(16 21 39 106)(41 75 69 113)(42 114 70 76)(43 73 71 115)(44 116 72 74)(45 95 65 77)(46 78 66 96)(47 93 67 79)(48 80 68 94)(53 99 64 92)(54 89 61 100)(55 97 62 90)(56 91 63 98)(57 86 84 101)(58 102 81 87)(59 88 82 103)(60 104 83 85)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,38,29,13)(2,39,30,14)(3,40,31,15)(4,37,32,16)(5,110,121,19)(6,111,122,20)(7,112,123,17)(8,109,124,18)(9,49,34,25)(10,50,35,26)(11,51,36,27)(12,52,33,28)(21,119,108,126)(22,120,105,127)(23,117,106,128)(24,118,107,125)(41,81,71,60)(42,82,72,57)(43,83,69,58)(44,84,70,59)(45,56,67,61)(46,53,68,62)(47,54,65,63)(48,55,66,64)(73,102,113,85)(74,103,114,86)(75,104,115,87)(76,101,116,88)(77,89,93,98)(78,90,94,99)(79,91,95,100)(80,92,96,97), (1,87,9,79)(2,86,10,78)(3,85,11,77)(4,88,12,80)(5,84,23,66)(6,83,24,65)(7,82,21,68)(8,81,22,67)(13,75,25,91)(14,74,26,90)(15,73,27,89)(16,76,28,92)(17,72,126,62)(18,71,127,61)(19,70,128,64)(20,69,125,63)(29,104,34,95)(30,103,35,94)(31,102,36,93)(32,101,33,96)(37,116,52,97)(38,115,49,100)(39,114,50,99)(40,113,51,98)(41,120,56,109)(42,119,53,112)(43,118,54,111)(44,117,55,110)(45,124,60,105)(46,123,57,108)(47,122,58,107)(48,121,59,106), (1,118,31,127)(2,128,32,119)(3,120,29,125)(4,126,30,117)(5,52,123,26)(6,27,124,49)(7,50,121,28)(8,25,122,51)(9,111,36,18)(10,19,33,112)(11,109,34,20)(12,17,35,110)(13,107,40,22)(14,23,37,108)(15,105,38,24)(16,21,39,106)(41,75,69,113)(42,114,70,76)(43,73,71,115)(44,116,72,74)(45,95,65,77)(46,78,66,96)(47,93,67,79)(48,80,68,94)(53,99,64,92)(54,89,61,100)(55,97,62,90)(56,91,63,98)(57,86,84,101)(58,102,81,87)(59,88,82,103)(60,104,83,85)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,38,29,13)(2,39,30,14)(3,40,31,15)(4,37,32,16)(5,110,121,19)(6,111,122,20)(7,112,123,17)(8,109,124,18)(9,49,34,25)(10,50,35,26)(11,51,36,27)(12,52,33,28)(21,119,108,126)(22,120,105,127)(23,117,106,128)(24,118,107,125)(41,81,71,60)(42,82,72,57)(43,83,69,58)(44,84,70,59)(45,56,67,61)(46,53,68,62)(47,54,65,63)(48,55,66,64)(73,102,113,85)(74,103,114,86)(75,104,115,87)(76,101,116,88)(77,89,93,98)(78,90,94,99)(79,91,95,100)(80,92,96,97), (1,87,9,79)(2,86,10,78)(3,85,11,77)(4,88,12,80)(5,84,23,66)(6,83,24,65)(7,82,21,68)(8,81,22,67)(13,75,25,91)(14,74,26,90)(15,73,27,89)(16,76,28,92)(17,72,126,62)(18,71,127,61)(19,70,128,64)(20,69,125,63)(29,104,34,95)(30,103,35,94)(31,102,36,93)(32,101,33,96)(37,116,52,97)(38,115,49,100)(39,114,50,99)(40,113,51,98)(41,120,56,109)(42,119,53,112)(43,118,54,111)(44,117,55,110)(45,124,60,105)(46,123,57,108)(47,122,58,107)(48,121,59,106), (1,118,31,127)(2,128,32,119)(3,120,29,125)(4,126,30,117)(5,52,123,26)(6,27,124,49)(7,50,121,28)(8,25,122,51)(9,111,36,18)(10,19,33,112)(11,109,34,20)(12,17,35,110)(13,107,40,22)(14,23,37,108)(15,105,38,24)(16,21,39,106)(41,75,69,113)(42,114,70,76)(43,73,71,115)(44,116,72,74)(45,95,65,77)(46,78,66,96)(47,93,67,79)(48,80,68,94)(53,99,64,92)(54,89,61,100)(55,97,62,90)(56,91,63,98)(57,86,84,101)(58,102,81,87)(59,88,82,103)(60,104,83,85) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,38,29,13),(2,39,30,14),(3,40,31,15),(4,37,32,16),(5,110,121,19),(6,111,122,20),(7,112,123,17),(8,109,124,18),(9,49,34,25),(10,50,35,26),(11,51,36,27),(12,52,33,28),(21,119,108,126),(22,120,105,127),(23,117,106,128),(24,118,107,125),(41,81,71,60),(42,82,72,57),(43,83,69,58),(44,84,70,59),(45,56,67,61),(46,53,68,62),(47,54,65,63),(48,55,66,64),(73,102,113,85),(74,103,114,86),(75,104,115,87),(76,101,116,88),(77,89,93,98),(78,90,94,99),(79,91,95,100),(80,92,96,97)], [(1,87,9,79),(2,86,10,78),(3,85,11,77),(4,88,12,80),(5,84,23,66),(6,83,24,65),(7,82,21,68),(8,81,22,67),(13,75,25,91),(14,74,26,90),(15,73,27,89),(16,76,28,92),(17,72,126,62),(18,71,127,61),(19,70,128,64),(20,69,125,63),(29,104,34,95),(30,103,35,94),(31,102,36,93),(32,101,33,96),(37,116,52,97),(38,115,49,100),(39,114,50,99),(40,113,51,98),(41,120,56,109),(42,119,53,112),(43,118,54,111),(44,117,55,110),(45,124,60,105),(46,123,57,108),(47,122,58,107),(48,121,59,106)], [(1,118,31,127),(2,128,32,119),(3,120,29,125),(4,126,30,117),(5,52,123,26),(6,27,124,49),(7,50,121,28),(8,25,122,51),(9,111,36,18),(10,19,33,112),(11,109,34,20),(12,17,35,110),(13,107,40,22),(14,23,37,108),(15,105,38,24),(16,21,39,106),(41,75,69,113),(42,114,70,76),(43,73,71,115),(44,116,72,74),(45,95,65,77),(46,78,66,96),(47,93,67,79),(48,80,68,94),(53,99,64,92),(54,89,61,100),(55,97,62,90),(56,91,63,98),(57,86,84,101),(58,102,81,87),(59,88,82,103),(60,104,83,85)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim111111222244
type++++++-++-
imageC1C2C2C2C2C4D4Q8D4C4○D4C8⋊C22C8.C22
kernelC42.124D4C22.4Q16C429C4C2×C8⋊C4C2×C42.C2C42.C2C42C2×C8C22×C4C2×C4C22C22
# reps141118242422

Matrix representation of C42.124D4 in GL8(𝔽17)

160000000
016000000
001150000
001160000
00000010
000016161615
000016000
00001101
,
10000000
01000000
00100000
00010000
000001600
00001000
00001112
00001601616
,
813000000
129000000
00070000
001200000
00001014215
00001946
0000116413
00001613811
,
94000000
148000000
007100000
0012100000
000030112
000061567
00001112312
00001416813

G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,0,16,16,1,0,0,0,0,0,16,0,1,0,0,0,0,1,16,0,0,0,0,0,0,0,15,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,16,0,0,0,0,16,0,1,0,0,0,0,0,0,0,1,16,0,0,0,0,0,0,2,16],[8,12,0,0,0,0,0,0,13,9,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,10,1,1,16,0,0,0,0,14,9,16,13,0,0,0,0,2,4,4,8,0,0,0,0,15,6,13,11],[9,14,0,0,0,0,0,0,4,8,0,0,0,0,0,0,0,0,7,12,0,0,0,0,0,0,10,10,0,0,0,0,0,0,0,0,3,6,11,14,0,0,0,0,0,15,12,16,0,0,0,0,1,6,3,8,0,0,0,0,12,7,12,13] >;

C42.124D4 in GAP, Magma, Sage, TeX

C_4^2._{124}D_4
% in TeX

G:=Group("C4^2.124D4");
// GroupNames label

G:=SmallGroup(128,724);
// by ID

G=gap.SmallGroup(128,724);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,400,422,723,100,2019,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b*c^-1>;
// generators/relations

׿
×
𝔽